

Volume 38, Issue 2, April 2010

Contents

Issue 2, April 2010

Abstracted/Indexed in SCOPUS®. Full text available on ScienceDirect®.

Preliminary Communication

Synthesis and glycosidase inhibitory activity of 1-amino-3,6-anhydro-1-deoxy-p-sorbitol derivatives

pp 43-47

Stéphane Guillarme, Jean-Bernard Behr,* Claudia Bello, Pierre Vogel and Christine Saluzzo*

isosorbide

d : 82% inhibition towards $\emph{N}\text{-}acetylglucosaminidase}$

Regular Articles

Synthesis of 4,6-dideoxy-3-fluoro-2-keto- β -D-glucopyranosyl analogues of 5-fluorouracil, N^6 -benzoyl adenine, uracil, thymine, N^4 -benzoyl cytosine and evaluation of their antitumor activities

pp 48-55

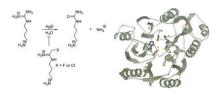
Stella Manta, Evangelia Tsoukala, Niki Tzioumaki, Christos Kiritsis, Jan Balzarini and Dimitri Komiotis*

The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto- β -D-glucopyranosyl nucleosides of 5-fluorouracil ($\mathbf{6a}$), N^6 -benzoyl adenine ($\mathbf{6b}$), uracil ($\mathbf{6c}$), thymine ($\mathbf{6d}$) and N^4 -benzoyl cytosine ($\mathbf{6e}$), is described. The newly synthesized 2'-ketopyranosyl derivatives were not potent antivirals at subtoxic concentrations. The 5-fluorouracil derivative $\mathbf{6a}$ was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μ M) than the other compounds.

B = **a**: 5-Fluorouracil, **b**: N^6 -Benzoyl adenine, **c**: Uracil, **d**: Thymine, **e**: N^4 -Benzoyl cytosine

Concise synthesis of the pentasaccharide *O*-antigen corresponding to the Shiga toxin producing *Escherichia coli* O171

pp 56-61

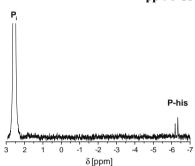

Pintu Kumar Mandal and Anup Kumar Misra*

ii

Characterization and inactivation of an agmatine deiminase from Helicobacter pylori

pp 62-73

Justin E. Jones, Corey P. Causey, Leslie Lovelace, Bryan Knuckley, Heather Flick, Lukasz Lebioda and Paul R. Thompson*

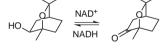


Thiophosphorylation of free amino acids and enzyme protein by thiophosphoramidate ions

pp 74-80

Tomasz Ruman,* Karolina Długopolska, Agata Jurkiewicz, Dagmara Rut, Tomasz Frączyk, Joanna Cieśla, Andrzej Leś, Zbigniew Szewczuk and Wojciech Rode

In search of an activity-preserving protein thiophosphorylation method, with thymidylate synthase recombinant protein used as a substrate, potassium thiophosphoramidate and diammonium thiophosphoramidate salts in Tris- and ammonium carbonate based buffer solutions were employed, proving to serve as a non-destructive environment. Using potassium phosphoramidate or diammonium thiophosphoramidate, a series of phosphorylated and thiophosphorylated amino acid derivatives was prepared, helping, together with computational (using density functional theory, DFT) estimation of ³¹P NMR chemical shifts, to assign thiophosphorylated protein NMR resonances and prove the presence of thiophosphorylated lysine, serine and histidine moieties.



Cineole biodegradation: Molecular cloning, expression and characterisation of (1R)- 6β -hydroxycineole dehydrogenase from *Citrobacter braakii*

pp 81-86

Kate E. Slessor, Jeanette E. Stok, Sonia M. Cavaignac, David B. Hawkes, Younes Ghasemi and James J. De $Voss^*$

An NAD(H)-dependent dehydrogenase, (1R)-6 β -hydroxycineole dehydrogenase (CinD) was found to catalyse the regio- and enantiospecific interconversion of (1R)-6 β -hydroxycineole and (1R)-6-ketocineole.

